PETAL LOSS gene regulates initiation and orientation of second whorl organs in the Arabidopsis flower.
نویسندگان
چکیده
PETAL LOSS is a new class of flower development gene whose mutant phenotype is confined mostly to the second whorl. Two properties are disrupted, organ initiation and organ orientation. Initiation is frequently blocked, especially in later-formed flowers, or variably delayed. The few petals that arise occupy a wider zone of the flower primordium than normal. Also, a minority of petals are trumpet-shaped, thread-like or stamenoid. Studies of ptl combined with homeotic mutants have revealed that the mutant effect is specific to the second whorl, not to organs with a petal identity. We propose that the PTL gene normally promotes the induction of organ primordia in specific regions of the second floral whorl. In ptl mutants, these regions are enlarged and organ induction is variably reduced, often falling below a threshold. A dominant genetic modifier of the ptl mutant phenotype was found in the Landsberg erecta strain that significantly boosts the mean number of petals per flower, perhaps by reinforcing induction so that the threshold is now more often reached. The second major disruption in ptl mutants relates to the orientation adopted by second whorl organs from early in their development. In single mutants the full range of orientations is seen, but when B function (controlling organ identity) is also removed, most second whorl organs now face outwards rather than inwards. Orientation is unaffected in B function single mutants. Thus petals apparently perceive their orientation within the flower primordium by a mechanism requiring PTL function supported redundantly by that of B class genes.
منابع مشابه
RABBIT EARS, encoding a SUPERMAN-like zinc finger protein, regulates petal development in Arabidopsis thaliana.
Floral organs usually initiate at fixed positions in concentric whorls within a flower. Although it is understood that floral homeotic genes determine the identity of floral organs, the mechanisms of position determination and the development of each organ have not been clearly explained. We isolated a novel mutant, rabbit ears (rbe), with defects in petal development. In rbe, under-developed p...
متن کاملROXY1, a member of the plant glutaredoxin family, is required for petal development in Arabidopsis thaliana.
We isolated three alleles of an Arabidopsis thaliana gene named ROXY1, which initiates a reduced number of petal primordia and exhibits abnormalities during further petal development. The defects are restricted to the second whorl of the flower and independent of organ identity. ROXY1 belongs to a subgroup of glutaredoxins that are specific for higher plants and we present data on the first cha...
متن کاملAINTEGUMENTA promotes petal identity and acts as a negative regulator of AGAMOUS.
The Arabidopsis AINTEGUMENTA (ANT) gene has been shown previously to be involved in ovule development and in the initiation and growth of floral organs. Here, we show that ANT acts in additional processes during flower development, including repression of AGAMOUS (AG) in second whorl cells, promotion of petal epidermal cell identity, and gynoecium development. Analyses of ap2-1 ant-6 double mut...
متن کاملThe F-box-containing protein UFO and AGAMOUS participate in antagonistic pathways governing early petal development in Arabidopsis.
The UNUSUAL FLORAL ORGANS (UFO) gene is required for multiple processes in the developing Arabidopsis flower, including the proper patterning and identity of both petals and stamens. The gene encodes an F-box-containing protein, UFO, which interacts physically and genetically with the Skp1 homolog, ASK1. In this report, we describe four ufo alleles characterized by the absence of petals, which ...
متن کاملInitiation patterns of flower and floral organ development in Arabidopsis thaliana.
Sector boundary analysis has been used to deduce the number and orientation of cells initiating flower and floral organ development in Arabidopsis thaliana. Sectors were produced in transgenic plants carrying the Ac transposon from maize inserted between the constitutive 35S promoter and the GUS reporter gene. Excision of the transposon results in a blue-staining sector. Plants were chosen in w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 126 24 شماره
صفحات -
تاریخ انتشار 1999